Construction of confidence intervals based on Chebyshev՚s inequality and recurrent method
https://doi.org/10.34020/2073-6495-2022-1-211-223
Abstract
The article presents a new method for constructing confidence intervals. A formula obtained on the basis of Chebyshev's inequality is used, it is applied in the recurrent method in the case of unknown variance. A new method for describing the direct and inverse Laplace functions is proposed. The developed methods can be used not only for normal distribution, but also for any other, as well as in the case when the type of distribution law of a random variable is unknown. The practical implementation is shown by a concrete example of calculating the confidence interval for the student's score obtained from the test results.
About the Authors
A. V. GanichevaRussian Federation
Ganicheva Antonina V. – Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Physical and Mathematical Disciplines and Information Technologies.
Tver
A. V. Ganichev
Russian Federation
Ganichev Aleksey V. – Associate Professor, Department of Informatics and Applied Mathematics.
Tver
References
1. Belickij V.I., Sokolov S.M., Sherstjuk A.V. Minimizacija ob#ema vyborki izmerenij postojannoj velichiny [Minimization of the sample size of measurements of constant magnitude], Trudy Voenno-kosmicheskoj akademii im. A.F. Mozhajskogo [Proceedings of the Military Space Academy named after A.F. Mozhaisky], 2014, no. 644, pp. 7–21.
2. Ganicheva A.V., Ganichev A.V. Metod postroenija doveritel’nogo intervala dlja dispersii sluchajnoj velichiny [Method of constructing a confidence interval for the variance of a random variable], Vestnik NGUJeU [Vestnik NSUEM], 2021, no. 3, pp. 146–155.
3. Grzhibovskij A.M. Doveritel’nye intervaly dlja chastot i dolej [Confidence intervals for frequencies and fractions], Jekologija cheloveka [Human ecology], 2008, no. 5, pp. 57–60.
4. Gumennikova Ju.V., Rjabinova E.N., Chernicyna R.N. Statisticheskaja obrabotka rezul’tatov testirovanija studentov [Statistical processing of student testing results], Vestnik Samarskogo gosudarstvennogo tehnicheskogo universiteta [Vestnik of Samara State Technical University]. Serija: Psihologo-pedagogicheskie nauki [Series: Psychological and pedagogical sciences], 2015, no. 3 (27), pp. 78–87.
5. Ivanov M.A., Lucenko M.M. Minimaksnye doveritel’nye intervaly dlja parametra gipergeometricheskogo raspredelenija [Minimax confidence intervals for the hypergeometric distribution parameter], Avtomatika i telemehanika [Automation and telemechanics], 2000, no. 7, pp. 68–76.
6. Kan Ju.S., Sobol’ V.R. Asimptoticheskij doveritel’nyj interval dlja uslovnoj verojatnosti pri prinjatii reshenij [Asymptotic confidence interval for conditional probability in decision-making], Avtomatika i telemehanika [Automation and telemechanics], 2017, no. 10, pp. 130–138.
7. Krejdik E.L. Metodika rascheta doveritel’nogo intervala ocenki sluchajnoj velichiny, podchinennoj kompozicii normal’nogo i ravnomernogo zakonov raspredelenija [Method of calculating the confidence interval of estimating a random variable subordinate to the composition of normal and uniform distribution laws], Doklady BGUIR [Reports of the University], 2017, no. 7 (109), pp. 25–31.
8. Krivencov A.S., Ul’janov M.V. Interval’naja ocenka parametrov beta-raspredelenija pri opredelenii doveritel’noj trudoemkosti algoritmov [Interval estimation of parameters of the beta distribution in the determination of the confidence of the complexity of algorithms], Izvestija JuFU [Izvestiya SFU], 2012, no. 7 (132), pp. 210–219.
9. Popov A.M. Postroenie doveritel’nogo intervala dlja mediany raspredelenija nepreryvnogo tipa [Construction of the confidence interval for the median of the distribution of the continuous type], Sistemnyj analiz i analitika [System analysis and Analytics], 2017, no. 1 (2), pp. 29–37.
10. Prihod’ko S.B., Makarova L.N. Opredelenie doveritel’nogo intervala tochechnoj ocenki parametra jeksponencial’nogo raspredelenija [Determination of the confidence interval of the point estimation of the exponential distribution parameter], Problemi іnformacіjnih tehnologіj [Problems of information technologies], 2012, no. 2 (012), pp. 84–87.
11. Radionova M.V. Postroenie optimal’nyh doveritel’nyh intervalov dlja parametrov polozhenija i masshtaba raspredelenij [Construction of optimal confidence intervals for the parameters of the position and scale of distributions], Aktual’nye voprosy sovremennoj nauki [Actual issues of modern science], 2010, no. 11, pp. 7–31.
12. Svetlakov A.A., Svinolupov Ju.G., Shumakov E.V. Rekurrentnyj sposob postroenija doveritel’nyh intervalov ocenivanija neizvestnyh znachenij izmerjaemyh velichin [Recurrent method of constructing confidence intervals for estimating unknown values of measured quantities], Pribory [Instruments], 2006, no. 6, pp. 54–59.
13. Simankov V.S., Buchackaja V.V., Teplouhov S.V. Opredelenie optimal’nogo sochetanija doveritel’nogo intervala i doveritel’noj verojatnosti [Determination of the optimal combination of confidence interval and confidence probability], Vestnik Adygejskogo gosudarstvennogo universiteta [Vestnik of the Adygea State University]. Serija 4: Estestvenno-matematicheskie i tehnicheskie nauki [Series 4: Natural-mathematical and technical sciences], 2019, no. 3 (246), pp. 69–74.
14. Suvorova A.V., Pashhenko A.E., Tulup’eva T.V., Tulup’ev A.L Postroenie doveritel’nyh intervalov ocenok intensivnosti riskovannogo povedenija na osnove neravenstva Chebysheva [Construction of confidence intervals for assessing the intensity of risky behavior based on Chebyshev inequality], Trudy SPIIRAN [Proceedings of SPIIRAN], 2009, no. 10, pp. 96–109.
15. Tregubov R.B., Stremouhov M.V. Zadacha ocenivanija parametra binomial’nogo raspredelenija po ogranichennomu chislu opytov [The problem of estimating the binomial distribution parameter for a limited number of experiments], Izvestija JuFU. Tehnicheskie nauki [Izvestiya SFU. Technical sciences], 2015, no. 2 (163), pp. 93–106.
16. Jarmamedov D.M., Lipatov V.A. Metod doveritel’nyh intervalov v biologicheskih i medicinskih issledovanijah [Method of confidence intervals in biological and medical research], Innova [Innova], 2016, no. 3 (4), pp. 13–15.
17. Bonett D.G. Robust Confidence Interval for a Ratio of Standard Deviations. Applied Psychological Measurement, 2006, vol. 30, no. 5, pp. 432–439.
18. Di Stefano J. A confidence interval approach to data analysis. Forest Ecology and Management, 2004, vol. 187, no. 2-3, pp. 173–183.
19. Henderson M., Meyer M.C. Exploring the Confidence Interval for a Binomial Parameter in a First Course in Statistical Computing. American Statistician, 2001, vol. 55, no. 4, pp. 337–344.
Review
For citations:
Ganicheva A.V., Ganichev A.V. Construction of confidence intervals based on Chebyshev՚s inequality and recurrent method. Vestnik NSUEM. 2022;(1):211-223. (In Russ.) https://doi.org/10.34020/2073-6495-2022-1-211-223