Preview

Vestnik NSUEM

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Clustering as a tool for searching for analog objects in the development of oil field design documentation

https://doi.org/10.34020/2073-6495-2025-1-043-060

Abstract

The article applies clustering by the k-means method to search for similar objects in the development of oil fields and design documentation. The study is based on the analysis of data from 1490 objects from various regions of Russia, taking into account both static and dynamic parameters, including the number of revisions of design and technical documentation. This approach allows evaluating the characteristics of objects at the stages of revising design documentation and developing efficiency. The identified rules can serve to optimize the management processes of design documentation, which, in turn, contributes to increasing the economic efficiency of development. Research is aimed to deepen the understanding of the relationship between objects and the termination of revision of design and technical documentation, which is of critical importance in the design and management of hydrocarbon development facilities.

About the Authors

I. V. Makarov
Ufa University of Science and Technology
Russian Federation

Makarov Ivan V. – Postgraduate Student, Department of Statistics and Business Informatics

Ufa



V. B. Prudnikov
Ufa University of Science and Technology
Russian Federation

Prudnikov Vadim B. – Candidate of Technical Sciences, Associate Professor, Department of Statistics and Business Informatics, Deputy Head, Laboratory for Research of Socio-Economic Processes

Ufa



References

1. Bezborodov A.K., Deeva I.Ju. Algoritm poiska mestorozhdenij-analogov na osnove metodov mashinnogo obuchenija [Algorithm for searching for analog deposits based on machine learning methods]. Al’manah nauchnyh rabot molodyh uchenyh Universiteta ITMO [Almanac of scientific works of young scientists of ITMO University]. Saint Petersburg, NIU ITMO, 2021. Pp. 1–6.

2. Bezborodov A.K., Deeva I.Ju. Poisk mestorozhdenij-analogov na osnove klasterizacii bajesovskih setej [Search for analog deposits based on clustering of Bayesian networks], Izv. vuzov. Priborostroenie [News of universities. Instrument engineering], 2022, vol. 65, no. 1, pp. 64–72. DOI: 10.17586/0021-3454-2022-65-1-64-72.

3. Vologin I.S., Islamov R.R., Nigmatullin F.N., Harisova A.V., Loznjuk O.A. Metodika vybora ob#ekta-analoga dlja neftegazovoj zalezhi po geologo-fizicheskim harakteristikam [Methodology for selecting an analog object for an oil and gas deposit based on geological and physical characteristics], Neftjanoe hozjajstvo [Oil Industry], 2019, no. 12, pp. 124–127. DOI: 10.24887/0028-2448-2019-12-124-127. EDN: NRPKVE.

4. Islamov R.R., Abdrahmanova Je.K., Jalaev A.V., Nigmatullin F.N., Muslimov B.Sh., Harisova A.V. Novaja metodika analiticheskogo jekspress-rascheta osnovnyh pokazatelej razrabotki nerazrabatyvaemyh neftegazovyh zalezhej dlja provedenija mnogovariantnyh raschjotov s cel’ju kompleksnoj optimizacii proektnyh reshenij [New methodology for analytical express calculation of the main indicators of development of undeveloped oil and gas deposits for conducting multivariant calculations for the purpose of comprehensive optimization of design solutions], Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collection, preparation and transportation of oil and oil products], 2023, iss. 3 (143), pp. 48–60. Available at:http://doi.10.17122/ntj-oil-2023-3-48-60.

5. Muhametshin V.Sh., Hakimzjanov I.N., Bahtizin R.N., Kuleshova L.S. Differenciacija i gruppirovanie slozhnopostroennyh zalezhej nefti v karbonatnyh kollektorah v reshenii zadach upravlenija razrabotkoj [Differentiation and grouping of complex oil deposits in carbonate reservoirs in solving development management problems], Neftjanoe hozjajstvo [Oil industry], 2021, no. 5, pp. 58–64.

6. Orlova I.O., Zaharchenko E.I., Skiba N.K. Metodicheskij podhod k klassifikacii mestorozhdenij i poisku mestorozhdenij-analogov [Methodological approach to the classification of fields and the search for analogous fields], Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij [Geology, geophysics and development of oil and gas fields], 2014, no. 12, pp. 16–18.

7. Oficial’nyj sajt PAO NK «Rosneft’». Operacionnaja struktura [Official website of PJSC NK Rosneft. Operational structure]. Available at: https://udmurtneft.rosneft.ru/about/Glance/OperationalStructure (accessed: 09.10.2024).

8. Perminov D.E., Valeev S.V. Klasternyj analiz s ispol’zovaniem jelementov nechetkoj logiki s cel’ju avtomaticheskogo poiska skvazhin-kandidatov dlja provedenija geologo-tehnicheskih meroprijatij [Cluster analysis using fuzzy logic elements for the purpose of automatic search for candidate wells for geological and technical measures], Nauchno-tehnicheskij vestnik OAO «NK «Rosneft’» [Scientific and Technical Bulletin of OJSC NK Rosneft], 2019, no. 12, pp. 1–7.

9. Podnebesnyh A.V., Hafizov A.R. Metodika jekspress-ocenki vybora ob#ekta-analoga dlja zalezhej uglevodorodnogo syr’ja na osnove ih geologicheskih priznakov [Methodology for express assessment of selection of an analog object for hydrocarbon deposits based on their geological features], Problemy sbora, podgotovki i transporta nefti i nefteproduktov [Problems of collection, preparation and transportation of oil and oil products], 2019, no. 3, pp. 9–18.

10. Pravila podgotovki tehnicheskih proektov razrabotki mestorozhdenij uglevodorodnogo syr’ja, utverzhdennye prikazom Minprirody Rossii ot 20.09.2019 № 639, v red. prikazov Minprirody Rossii ot 07.08.2020 № 570, ot 06.10.2020 № 772 [Rules for preparation of technical projects for development of hydrocarbon deposits, approved by order of the Ministry of Natural Resources of Russia dated 09.20.2019 No. 639, as amended by orders of the Ministry of Natural Resources of Russia dated 08/07/2020 No. 570, dated 10/06/2020 No. 772]. Oficial’nyj sajt Ministerstva prirodnyh resursov i jekologii Rossijskoj Federacii [Official website of the Ministry of Natural Resources and Environment of the Russian Federation]. Available at: http://www.mnr.gov.ru (accessed: 20.10.2024).

11. Ronzhin A.A. Proektnaja dokumentacija pri razrabotke neftegazokondensatnyh mestorozhdenij [Design documentation for the development of oil and gas condensate fields], Molodoj uchenyj [Young scientist], 2020, no. 17 (307), pp. 413–415.

12. Rosljak A.T., Sandu S.F. Razrabotka i jekspluatacija neftjanyh i gazovyh mestorozhdenij: uchebnoe posobie [Development and operation of oil and gas fields: a tutorial]. Tomskij politehnicheskij universitet. Tomsk: Izdatel’stvo Tomskogo politehnicheskogo universiteta, 2013.

13. Solodov I.S., Shakshin V.P., Kolesnikov V.A., Hamitov I.G., Ustinov A.S. Statisticheskie podhody k vyjavleniju mestorozhdenij-analogov Samarskoj oblasti [Statistical approaches to identifying similar fields in the Samara region], Neftjanoe hozjajstvo [Oil industry], 2011, no. 6, pp. 30–33.

14. About K-Means vs Hierarchical Clustering Methods for Data Segmentation. Available at: https://dataheadhunters.com/academy/k-means-vs-hierarchical-clustering-methods-for-data-segmentation/ (accessed: 19.09.2024).

15. Elkan C. “Using the triangle inequality to accelerate k-means”, ICML 2003 Conference Proceedings, 2003, pp. 147–153.

16. Clustering. Available at: https://r.qcbs.ca/workshop09/book-en/clustering.html (accessed: 13.10.2024).

17. Da Gama e Silva R. et al. Sensitivity analysis in a machine learning methodology for reservoir analogues. Rio Oil & Gas Expo and Conf., Rio de Janeiro, Brazil, 24–27 Sept. 2018. P. 1–9.

18. Neves L., Ferreira C., Vesely F. Facies, petrophysical and geochemical properties of gravity-flow deposits in reservoir analogs from the Itararé Group (late Carboniferous), Paraná Basin, Brazil. Marine and Petroleum Geology. 2019. Vol. 110. P. 717–736. DOI: 10.1016/j.marpetgeo.2019.07.038.

19. Olivo M. et al. Characterizing scales of sedimentary heterogeneity in a fluvial – estuarine reservoir analog: An example from the Mulichinco Formation, Neuquén Basin, Argentina. Marine and Petroleum Geology. 2020. Vol. 121. DOI: 10.1016/j.marpetgeo.2020.104604.

20. Popova O. Analogy in the World of Geological Uncertainties, or How Reservoir Analogs May Refine Your Probabilistic Geomodel. SPE Annual Caspian Techn. Conf. and Exhibition, Astana, Kazakhstan, 31 Oct. – 1 Nov. 2018. P. 1–13. DOI: 10.2118/192551-MS.

21. Ren Z., Sun L., Zhai Q. Improved k-means and spectral matching for hyperspectral mineral mapping. Intern. Journal of Applied Earth Observation and Geoinformation. 2020. Vol. 91. P. 1–12. DOI: 10.1016/j.jag.2020.102154.

22. Rodriguez H.M. et al. New Approach to Identify Analogue Reservoirs. SPE Economics and Management, New Orleans, Louisiana, USA, 30 Sept. – 2 Oct. 2013. P. 1–17. DOI: 10.2118/166449-MS.

23. Sun S.Q., Wan J.C. Geological analogs usage rates high in global survey. Oil & Gas Journal. 2002, vol. 100, iss. 46, pp. 49–50.

24. Voskresenskiy A. et al. Variations in ranked list of reservoir analogs as an effect of search preferences. Geosciences: Converting Knowledge into Resources, Saint-Petersburg, Russia, 6–9 Apr. 2018. P. 1–5. (Conf. Proc.). DOI: 10.3997/2214-4609.202053163.


Review

For citations:


Makarov I.V., Prudnikov V.B. Clustering as a tool for searching for analog objects in the development of oil field design documentation. Vestnik NSUEM. 2025;(1):43-60. (In Russ.) https://doi.org/10.34020/2073-6495-2025-1-043-060



ISSN 2073-6495 (Print)