Preview

Vestnik NSUEM

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Game-theoretic approach to modeling researchers’ mobility

https://doi.org/10.34020/2073-6495-2025-3-150-170

Abstract

The article considers game-theoretic modeling of researchers’ mobility between cities of own country. Two simple game-theoretic models are constructed. The first model characterizes the decision-making process of a researcher regarding the location of his activity by assessing the probability of success of such activity in conditions of individual or group participation, and is an antagonistic (matrix) game. The second model takes into account the interaction of researchers in a group, expressed through comparison of changes in individual and joint knowledge. Different professional and quantitative composition of researchers in cities generates multiple equilibria, characteristic of coordination and anti-coordination games. The problem of choosing the best Nash equilibrium is proposed to be solved using an additional parameter: the degree of possibility of continuing a scientific topic that was conducted in the city of departure. It is revealed that differences in the degree of such possibilities between cities can form the priority of researchers’ movement.

About the Authors

T. B. Melnikova
Sevastopol branch of the Plekhanov Russian University of Economics
Russian Federation

Melnikova Tatyana B., Candidate of Economic Sciences, Associate Professor of the Department of Economics and Management

Sevastopol



A. V. Sigal
Vernadsky Crimean Federal University
Russian Federation

Sigal Anatoly V., Doctor of Economic Sciences, Professor of the Department of Business Informatics and Mathematical Modeling

Simferopol, Republic of Crimea



References

1. Kyvik S., Reymert I. Research collaboration in groups and networks: differences across academic fields. Scientometrics. 2017. No. 113. P. 951–967. https://doi.org/10.1007/s11192-017-2497-5

2. Нефедова А.И., Чефанова Е.И., Слепых В.И., Иващенко А.Д. Эффекты участия во внутрироссийской мобильности для молодых ученых и преподавателей // Вопросы образования. 2024. № 2. С. 203–225. https://doi.org/10.17323/vo-2024-17186

3. Гуськов А.Е., Селиванова И.В., Косяков Д.В. Миграция российских исследователей: анализ на основе наукометрического подхода // Библиосфера. 2021. № 1. С. 3–15. https://doi.org/10.20913/1815-3186-2021-1-3-15

4. Дежина И.Г., Солдатова С.Э., Ушакова С.Е. Миграция научных кадров Балтийского региона: прогноз и факторы влияния // Балтийский регион. 2020. Т. 12, № 1. С. 115–131. https://doi.org/10.5922/2079-8555-2020-1-7

5. Jiang F., Pan T., Wang J., Ma Y. To academia or industry: Mobility and impact on ACM fellows’ scientific careers // Information Processing & Management. 2024. Vol. 61, no. 4. P. 103736. https://doi.org/10.1016/j.ipm.2024.103736

6. Azoulay P., Ganguli I., Graff Zivin J. The mobility of elite life scientists: professional and personal determinants // Research Policy. 2017. Vol. 46, iss. 3. P. 573–590. https://doi.org/10.1016/j.respol.2017.01.002

7. Bernard M., Bernela B., Ferru M. Does the geographical mobility of scientists shape their collaboration network? A panel approach of chemists’ careers // Papers in Regional Science. 2021. No. 100. P. 79–99. https://doi.org/10.1111/pirs.12563

8. Васильева А.В. Прогноз трудовой миграции, воспроизводства населения и экономического развития России // Экономика региона. 2017. Т. 13, вып. 3. С. 812–826. https://doi.org/10.17059/2017-3-14

9. Судакова А.Е., Тарасьев A.A., Сандлер Д.Г. Динамическая модель прогнозирования научной миграции в регионе // Экономика региона. 2021. Т. 17, вып. 4. С. 1196–1209. https://doi.org/10.17059/ekon.reg.2021-4-11

10. Vaccario G., Verginer L., Schweitzer F. Reproducing scientists’ mobility: A data-driven model // Scientific Reports. 2021. Vol. 11, no. 1. https://doi.org/10.1038/s41598-021-90281-9

11. Deville P., Wang D., Sinatra R., Song Ch., Blondel V.D., Barabási A.-L. Career on the Move: Geography, Stratification and Scientific Impact // Scientific Reports. 2014. Vol. 4, no. 1. P. 4770. https://doi.org/10.1038/srep04770

12. Сигал А.В. Теория игр и ее экономические приложения. М.: ИНФРА-М, 2019. 418 с. https://doi.org/10.12737/textbook_5b4462825d3c38.99437329

13. Мельникова Т.Б. Модель формирования и роста сети локализации знаний // Вестник Волгоградского государственного университета. Экономика. 2025. Т. 27, № 2.

14. Гайнанов Д.А., Гатауллин Д.А., Аслаева С.Ш. Оценка потенциала перспективных экономических специализаций региона // Вестник Удмуртского университета. Серия Экономика и право. 2023. Т. 33, № 5. С. 769–777. https://doi.org/10.35634/2412-9593-2023-33-5-769-777.

15. Кудрявцева Т.Ю., Схведиани А.Е., Родионова М.А., Яковлева В.В. Идентификация кластеров на территории России на основе синтеза функционального и пространственного подходов // Регионология. 2023. Т. 31, № 1 (122). С. 46–69. https://doi.org/10.15507/2413-1407.122.031.202301.046-069

16. Ужегов А.О. Индустриальный профиль регионов и возможности их высокотехнологичного развития // Вестник Омского университета. Серия: Экономика. 2023. Т. 21, № 3. С. 118–128. https://doi.org/10.24147/1812-3988.2023.21(3).118-128

17. Easley D., Kleinberg J. Networks, Crowds, and Markets: Reasoning about a highly connected world. Cambridge University Press, 2010. 819 p.

18. Carlsson H., van Damme E. Global games and equilibrium selection // Econometrica. 1993. Vol. 61, no. 5. P. 989–1018. https://doi.org/10.2307/2951491


Review

For citations:


Melnikova T.B., Sigal A.V. Game-theoretic approach to modeling researchers’ mobility. Vestnik NSUEM. 2025;(3):150-170. (In Russ.) https://doi.org/10.34020/2073-6495-2025-3-150-170



ISSN 2073-6495 (Print)