Preview

Vestnik NSUEM

Advanced search
Open Access Open Access  Restricted Access Subscription Access

A module for intelligent analysis of student messages to support pedagogical activities during a digital learning

https://doi.org/10.34020/2073-6495-2025-4-142-157

Abstract

   The article focuses on the task of optimizing the workload of instructors involved in digital learning by automating processes related to exchanging emails with students. In particular, it presents a novel module for automatic analysis of text messages using machine learning methods.

   We propose a special deep neural network architecture adapted to the unique characteristics of student text messages.

   The system consists of a bidirectional recurrent neural network, an attention mechanism, and a dense output layer. We develop a module that successfully processes incoming emails from students, classifies them, and forwards them to the appropriate section of the forum located on the learning platform. The module also automatically generates answers to the most frequently asked questions. We demonstrate that the module helps significantly improve the pedagogical activity and reduces the time spent on responding to students’ emails. Using the module decreases the instructor’s workload and improves the students’ academic performance.

About the Author

I. P. Burukina
Penza State University
Russian Federation

Irina P. Burukina, Candidate of Technical Sciences, Head of the Department

Department of Computer-aided Design Systems

Penza



References

1. Saprykina D.I., Volohovich A.A. Problemy perehoda na distancionnoe obuchenie v Rossijskoj Federacii glazami uchitelej [Problems of the Transition to Distance Learning in the Russian Federation through the Eyes of Teachers], Fakty obrazovanija [Facts of Education], 2020, no. 4, pp. 1–32.

2. Alebeisat F., Altarawneh H., Alhalhouli Z.T., Qatawneh A., Almahasne M. The Impact of Human and Computer Interaction on eLearning Quality, International Journal of Interactive Mobile Technologies (iJIM), 2020, no. 16 (04), pp. 58–69. doi: 10.3991/ijim.v16i04.27309

3. Giannakos M.N., Mikalef P., Pappas I.O. Systematic literature review of e-learning capabilities to enhance organizational learning. Information Systems Frontiers. 2021. P. 1–17. doi: 10.1007/s10796-020-10097-2

4. Itinson K.S., Chirkova V.M. Obzor platform jelektronnogo obuchenija: instrumenty, preimushhestva, nedostatki [Review of e-learning platforms: tools, advantages, disadvantages], Baltijskij gumanitarnyj zhurnal [Baltic Journal of the Humanities], 2021, no. 3 (36), pp. 194–197. DOI: 10.261403/2021-1003-0048.

5. Tsaousis I., Sideridis G.D., AlGhamdi H.M. Evaluating a Computerized Adaptive Testing Version of a Cognitive Ability Test Using a Simulation Study, Journal of Psychoeducational Assessment, 2021, no. 39 (8), pp. 954–968. doi: 10.1177/07342829211027753

6. Usman Naseem, Imran Razzak, Shah Khalid Khan, Mukesh Prasad. A Comprehensive Survey on Word Representation Models: From Classical to State-of-the-Art Word Representation Language Models, ACM Trans. Asian Low-Resour. Lang. Inf. Process, 2021, no. 20, pp. 35. doi: 10.1145/3434237

7. Chomsky N. Aspects of the theory of syntax. MIT Press, Cambridge, Massachusetts (1965).

8. Ivano Lauriola, Alberto Lavelli, Fabio Aiolli. An introduction to Deep Learning in Natural Language rocessing: Models, techniques, and tools, Neurocomputing, 2022, no. 470, pp. 443–456. doi: 10.1016/j.neucom.2021.05.103

9. Selva Birunda, Kanniga Devi A Review on Word Embedding Techniques for Text Classification, Innovative Data Communication Technologies and Application. Lecture Notes on Data Engineering and Communications Technologies, 2021, no. 59. doi: 10.1007/978-981-15-9651-3

10. Tunstall L., Von Werra L., Wolf T. Natural language processing with transformers, O’Reilly Media. 2022.

11. Burukina I.S., Burukina I.P. Patterns of deverbal nominalization in Kaqchikel, Questions of linguistics, 2022, no. 6, pp. 62–80.

12. Burukina I. External merge in spec,CP: Complementizers projecting an argument, Syntax, 2023, no. 1, pp. 85–105. DOI: 10.1111/synt.12246.

13. Jiang X., Wang W., Tian S. Applications of natural language processing and large language models in materials discovery, Comput Mater, 2025, no. 11, pp. 79. doi: 10.1038/s41524-025-01554-0

14. Starukhin Ya., Diukarev V. Automation of text data processing using NLP, The American Journal of Engineering and Technology, 2024, no. 6 (07), pp. 24–39. doi: 10.37547/tajet/Volume06Issue07-04

15. Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, Rodrigo Nogueira. Python Toolkit for Reproducible Information Retrieval Research with Sparse and Dense Representations. In Proceedings of the 44<sup>th</sup> International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ‘21). Association for Computing Machinery, New York, NY, USA, 2021. P. 2356–2362. doi: 10.1145/3404835.3463238

16. Burukina I.P. Svidetel’stvo o gosudarstvennoj registracii programmy dlja JeVM № 2025615118 Rossijskaja Federacija [Certificate of State Registration of Computer Program No. 2025615118 Russian Federation]. Available at: https://new.fips.ru/registers-doc-view/fips_servlet (accessed: 27. 03. 2025).

17. Vlasova N.Ju., Molokova E.L. Ispol’zovanie metrik v izmerenijah jeffektivnosti vysshego obrazovanija: celesoobraznost’ i ogranichenija [Using Metrics in Measuring the Effectiveness of Higher Education: Feasibility and Limitations], Vektor nauki Tol’jattinskogo gosudarstvennogo universiteta. Serija: Jekonomika i upravlenie [Vector of Science, Togliatti State University. Series: Economics and Management], 2022, no. 3, pp. 15–24. DOI: 10.18323/2221-5689-2022-3-15-24.

18. Shirjaev I.M., Fursa E.V., Mokrousova D.I., Maskaev A.I. Metriki dlja izmerenija jeffektivnosti obrazovatel’nyh i nauchnyh organizacij: problemy i perspektivy primenenija [Metrics for measuring the effectiveness of educational and scientific organizations: problems and prospects of application], Journal of economic regulation [Journal of economic regulation], 2018, no. 4, pp. 178–191. DOI: 10.17835/2078-5429.2018.9.4.178-191.

19. Polcyn J. Human development level as a modifier of education efficiency, Management, 2018, no. 22, pp. 171–186. DOI: 10.2478/manment-2018-0030.

20. Kisljakov A.N., Golubeva A.N. Perspektivy i problemy cifrovoj transformacii sistemy obshhego obrazovanija v Rossijskoj Federacii [Prospects and problems of digital transformation of the general education system in the Russian Federation], Vestnik NGUJeU [Vestnik NSUEM], 2024, no. 1, pp. 45–59. DOI: 10.34020/2073-6495-2024-1-045-059.


Review

For citations:


Burukina I.P. A module for intelligent analysis of student messages to support pedagogical activities during a digital learning. Vestnik NSUEM. 2025;(4):142-157. (In Russ.) https://doi.org/10.34020/2073-6495-2025-4-142-157



ISSN 2073-6495 (Print)