Preview

Vestnik NSUEM

Advanced search

STABLE PARAMETER ESTIMATION OF AUTOREGRESSIVE MODELS BASED ON GENERALIzED METHOD OF LEAST MODULES

Abstract

The prevailing method to determine the factors of the regression equation is the least squares method (LSM), i.e. the parametric method that requires a number of severe restrictions: independence and normality of the distribution of measurement errors, no correlation of exogenous variable. It is known that even minor violations of these assumptions is dramatically reducing the effectiveness of evaluations. It should be noted the fragility of the LSM estimation procedure under large errors that comes to insolvent evaluation. Finding the autoregression equation factors significantly complicated by the bad conditionality of equations system representing the necessary conditions minimum sum of squares of deviations. The least t modules method (LMM) is alternative to LSM to ensure sustainability of under violation of LSM restrictions. Two options for implementing LMM: weighted LMM (WLMM) and generalized LMM (GLMM) are discussed in the report. Interdependence of WLMM and GLMM established in the work allows GLMM estimation brings to the iterative procedure with WLMM evaluations. The latter are calculated by solving the corresponding linear programming tasks.

About the Author

A. V. Panyukov
National Research South Ural State University
Russian Federation

Doctor of Physical and Mathematical Sciences, Head of Department of Economics and Mathematical Methods and Statistics, National Research South Ural State University, Chelyabinsk, Russia.



References

1. Magnus Ja.R., Katyshev P.K., Pereseckij A.A. Jekonometrika. M.: Delo, 2004. 576 p.

2. Mudrov V.I., Kushko V.L. Metody obrabotki izmerenij. Kvazipravdopodobnye ocenki. M.: Radio i svjaz’, 1983. 304 p.

3. Panjukov A.V., Germanenko M.I. Bezoshibochnoe reshenie sistem linejnyh algebraicheskih uravnenij // Vestnik Juzhno-Ural’skogo gosudarstvennogo universiteta. Serija: Matematika. Mehanika. Fizika. 2009. No 10. P. 33–40.

4. H’juber P. Robastnost’ v statistike. M.: Mir, 1984. 304 p.

5. Panyukov A.V., Tyrsin A.N. Stable Parametric Identification of Vibratory Diagnostics Objects // Journal of Vibroengineering. 2008. T. 10. No 2. P. 142–146.

6. Panyukov A.V., Gorbik V.V. Exact and Guaranteed Accuracy Solutions of Linear Programming Problems by Distributed Computer Systems with MPI // Tambov University REPORTS: A Theoretical and Applied Scientific Journal. Series: Natural and Technical Sciences. 2010. Vol. 15. Issue 4. P. 1392–1404.

7. Panyukov A.V., Golodov V.A. Parallel Algorithms of Integer Arithmetic in Radix Notations for Heterogeneous Computation Systems With Massive Parallelism // Vestnik Juzhno-Ural›skogo gosudarstvennogo universiteta. Serija: Matematicheskoe modelirovanie i programmirovanie. 2015. T. 8. No 2. P. 117–126.

8. Panyukov A.V., Gorbik V.V. Using Massively Parallel Computations For Absolutely Precise Solution of the Linear Programming Problems // Automation and Remote Control. 2012. T. 73. No 2. P. 276–290. DOI: 10.1134/S0005117912020063.

9. Panjukov A.V., Tyrsin A.N. Vzaimosvjaz› vzveshennogo i obobshhennogo metodov nai-men›shih modulej // Izvestija Cheljabinskogo nauchnogo centra UrO RAN. 2007. No 1. P. 6–11. URL: http://elibrary.ru/item.asp?id=9572542&.

10. Tyrsin A.N. Robastnoe postroenie regressionnyh zavisimostej na osnove obobshhennogo metoda naimen’shih modulej // Zapiski nauchnyh seminarov POMI, 2005. T. 328. P. 236–250. URL: ftp //ftp.pdmi.ras.ru/pub/publicat/znsl/v328/p236.ps.gz.


Review

For citations:


Panyukov A.V. STABLE PARAMETER ESTIMATION OF AUTOREGRESSIVE MODELS BASED ON GENERALIzED METHOD OF LEAST MODULES. Vestnik NSUEM. 2015;(4):339-346. (In Russ.)



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6495 (Print)