Preview

Vestnik NSUEM

Advanced search

APPLICABILITY OF BENFORD’S LAW FOR DETERMINATION OF RELIABILITY OF FINANCIAL STATEMENTS

Abstract

Misstatements due to fraudulent financial reporting, as a special type of opportunistic behavior, may inflict serious damage on firms, as well as disturb the stability of the national financial system as a whole. From this point of view, it is extremely important to explore methods, which allow us to detect the financial statements manipulation with the minimum of the analytical efforts. According to economic literature, Benford’s law can be used as the statistical tool for testing the reliability of financial reporting. It seems that methods, based on Benford’s distribution, give simple and effective technique for the realization of the necessary analytical procedures. At the same time, questions of practical applicability of Benford’s law for determination of reliability of financial statements remain open. This article aims to contribute to the solution of this problem. We hypothesized the existence of positive relationships between accruals ratio and mean absolute deviation. The last measure shows the degree of conformity of the actual proportion of occurrence a particular digit within the dataset to Benford’s law. Statistical testing states that the hypothesis is not true. Therefore, it becomes very important the further development of methods aimed at the identifying of false financial statements through the coefficients of financial analysis.

About the Author

M. A. Alekseev
Novosibirsk State University of Economics and Management
Russian Federation
Alekseev Michael A., PhD in Economics, Head of Department of Corporate Economy and Finance


References

1. Alekseev M.A., Savel’eva M.Ju. Metodologicheskie voprosy postroenija i ispol’zovanija kojefficientov nachislenij // Vestnik NGUJeU. 2016. № 2. P. 139–155.

2. Sornette D. Kak predskazyvat’ krahi finansovyh rynkov. Kriticheskie sobytija v slozhnyh finansovyh sistemah M.: Smart Book: Izd-vo ≪I-trejd≫, 2008. 400 p.

3. Boyle J. An Application of Fourier Series to the most Significant Digit Problems // American Mathematical Monthly. 1994. № 101. P. 879–886.

4. Carslaw C.A. Anomalies in Income Numbers: Evidence of Goal Oriented Behavior // The Accounting Review, LXIII, 1988. P. 321–327.

5. Dechow P.M., Richardson S.A., Sloan R.G. The Persistence and Pricing of the Cash Component of Earnings // Journal of Accounting Research, June, 2008.

6. Diekmann A. Not the first digit! Using Benford’s Law to detect fraudulent scientific data // Journal of Applied Statistics. 2007. № 34. P. 321–329.

7. Durtschi C., Hillison W., Pacini C. The Effective Use of Benford`s Low to Assist in Detecting Fraud in Accounting Data // Journal of Forensic Accounting. 2004. № 5. P. 17–34.

8. Etteridge M.L., Srivatsava R.P. Using Digital Analysis to Enhance Data Integrity // Issues in Accounting Education. 1999. № 14. P. 675–690.

9. Gob R. Data Conformance Testing by Digital Analysis–A Critical Review and an Approach to More Appropriate Testing // Quality Engineering. 2007. № 19. P. 281–297.

10. Hill T.P. Base-invariance implies Benford’s Law // Proceedings of the American Mathematical Society. 1995. № 123. P. 887–895.

11. Newcomb S. Note of Frequency of Use of Different Digits in Natural Numbers // American Journal of Mathematics, 1881. P. 39–40.

12. Nigrini M.J. Taxpayer Compliance Application of Benford’s Law // Journal of American Taxation Association. 1996. № 18. P. 72–92.

13. Panigrahi P.K. Discovering Fraud in Forensic Accounting Using Data Mining Techniques // The Chartered Accountant, April, 2006. P. 1426–1430.

14. Richardson S.A. at al. Accrual reliability, earnings persistence and stock prices // Journal of Accounting and Economics. 2005. № 3. P. 437–485.

15. Tilden C., Janes T. Empirical evidence of financial statement manipulation during economic recessions // Journal of Finance and Accountancy. 2012. № 10. P. 1–15.

16. Tomas J.K. Unusual Patterns in Reported Earnings // The Accounting Review, LXIV, 1989. P. 773–787.

17. Simkin M.G. Using Spreadsheets and Benford’s Law to Test Accounting Data // ISACA Journal. 2010. Vol. 1. P. 47–51.

18. Varian A.R. Benford’s Law // The American Statistician. 1972. № 26. P. 65–66.

19. Rossijskij obzor jekonomicheskih prestuplenij // PwC. 2016. [Jelektronnyj resurs]. URL: http://www.pwc.ru/ru/forensic-services/publications/resc-2016.html (data obrashhenija: 07.11.2016).

20. Amiram D., Bozanic Z., Rouen E. Detecting Financial Statement Irregularities: Evidence from the Distributional Properties of Financial Statement Numbers // Preliminary Draft, October 2006. [Jelektronnyj resurs]. URL: http://www.mccombs.utexas.edu/~/media/Files/MSB/Departments/Accounting/Brownbag%20papers/ABRBenford10032013.pdf (data obrashhenija: 07.11.2016).

21. Benford F. The law of anomalous numbers // Proceedings of American Philosophical Society, 1938. [Jelektronnyj resurs]. URL: http://www.jstor.org/pss/984802 (data obrashhenija: 07.11.2016).

22. Kyd C. Use Benford’s law with Excel to improve business planning // Excel User. N.p., 2007. [Jelektronnyj istochnik]. URL: http://www.exceluser.com/tools/benford_xl11.htm (data obrashhenija: 07.11.2016).

23. Scott P.D., Fasli M. Benford’s Law: An Empirical Investigation and a Novel Explanation. [Jelektronnyj resurs]. URL: http://www.dces.essex.ac.uk/technical-reports/2001/CSM-349.pdf (data obrashhenija: 07.11.2016).

24. Baza dannyh po rossijskim kompanijam, otrasljam i regionam. [Jelektronnyj resurs]. URL: http://www.Skrin.ru (data obrashhenija: 07.11.2016).


Review

For citations:


Alekseev M.A. APPLICABILITY OF BENFORD’S LAW FOR DETERMINATION OF RELIABILITY OF FINANCIAL STATEMENTS. Vestnik NSUEM. 2016;(4):114-128. (In Russ.)



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6495 (Print)