Preview

Vestnik NSUEM

Advanced search

Superlative Indices in Consumer Price Statistics: Perspective for Russia

https://doi.org/10.34020/2073-6495-2019-3-109-118

Abstract

The focus in this paper is on the superlative indices as perspective indicators for Russian price statistics. Price indices are calculated by Laspeyres formula which has a bias in measurement of price change. Superlative indices minimize this bias and on the base of economic approach and consumer choice theory Törnqvist formula has smaller bias. Superlative indices are analyzed on the ground of axiomatic approach as well. There are generalization of questions and problems which can appear in the process of superlative index adaption in price statistics in Russian.

About the Author

М. A. Kozlova
Ural State University of Economics
Russian Federation

Kozlova Mariya A., PhD in Economics, Associate Professor, Department of Information Technology and Statistics

Yekaterinburg



References

1. Kozlova M.A. Vremennoj indeks stoimosti zhizni: ot formirovanija koncepcii do prakticheskih raschetov // Statistika i jekonomika. 2018. T. 15. № 5. P. 63–72.

2. Rukovodstvo po indeksam potrebitel’skih cen: teorija i praktika / MOT, MVF, OJeSR, Evrostat, EJeK OON, Vsemirnyj bank. Vashington, Mezhdunarodnyj Valjutnyj Fond, 2007. 679 p.

3. Abraham K.G. Toward a cost-of-living index: progress and prospects // The Journal of Economic Perspectives. 2003. Vol. 17. No. 1. P. 45–58.

4. Balk B.M. On calculating cost-of-living index numbers for arbitrary income levels // Econometrica. 1990. Vol. 58. No. 1. P. 75–92.

5. Balk B.M. Second thoughts on Wald’s cost-of-living index and Frisch’s double expenditure method // Econometrica. 1981. Vol. 49. No. 6. P. 1553–1558.

6. Balk B.M., Diewert W.E. A characterization of the Törnqvist price index // Economic Letters. 2001. Vol. 72. P. 279–281.

7. Chetty V.K. On the construction of cost of living and productivity indices // International Economic Review. 1971. Vol. 12. No. 1. P. 144–146.

8. Dalton K.V., Greenlees J.S., Stewart K.J. Incorporating a geometric mean formula into the CPI // Monthly Labor Review. 1998. October. P. 3–7.

9. Diewert W.E. Exact and superlative index numbers // Journal of Econometrics. 1976. Vol. 4. P. 115–145.

10. Galatin M. A true price index when the consumer saves // The American Economic Review. 1973. Vol. 63. No. 1. P. 185–194

11. Klein L.R., Rubin H. A constant-utility index of the cost of living // The Review of Economic Studies. 1947–1948. Vol. 15. No. 2. P. 84–87.

12. Morell A.J.H. Some thoughts on index numbers // The Incorporated Statisticians. 1952. Vol. 3. No. 3. P. 25–34.

13. Reinsdorf M.B., Diewert W.E., Ehemann C. Additive decompositions for Fisher, Törnqvist and geometric mean indexes // Journal of Economic and Social Measurement. 2002. Vol. 28. P. 51–61.

14. Triplett J.E. Should the cost-of-living provide the conceptual framework for a consumer price index? // The Economic Journal. 2001. Vol. 111. No. 472. P. F311–F334.

15. Wald A. A new formula for the index of cost of living // Econometrica. 1939. Vol. 7. No. 4. P. 319–331.


Review

For citations:


Kozlova М.A. Superlative Indices in Consumer Price Statistics: Perspective for Russia. Vestnik NSUEM. 2019;(3):109-118. (In Russ.) https://doi.org/10.34020/2073-6495-2019-3-109-118



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6495 (Print)