Preview

Vestnik NSUEM

Advanced search

Modification of the Pre-Processing Stage of a Traffi Sign Recognition System Taking into Account the Characteristics of the Subject Area

https://doi.org/10.34020/2073-6495-2020-2-235-249

Abstract

Traffic sign recognition systems require a high level of responsiveness and accuracy with limited use of computing resources. The process of image pre-processing precedes the process of directly recognizing images, therefore, the recognition results depend on its effectiveness. When conducting pre-processing, it is important to take into account the features of the subject area, within which recognition is performed. The article discusses the process of pre-processing and preparing images in the context of creating a system for recognizing road signs. The main problems that arise during the operation of such a system are identified. Their solutions are proposed. Own combination of these solutions allowed us to create a new system for recognizing road signs, which gives a gain in processing speed by cutting off images of no interest before entering the classifier, and also taking into account the peculiarities of operation in an urban environment – more difficult conditions compared with recognition of road signs on tracks or on artificially created training grounds.

About the Author

S. Yu. Pchelintsev
Tambov State University named after G.R. Derzhavin
Russian Federation

Pchelintsev Sergey Yu., Postgraduate Student, Department of Mathematical Modeling and Information Technology

Tambov



References

1. Belyh E.A. Obuchenie kaskadov Haara // Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mehanika. Informatika. 2017. Vyp. 1 (22). P. 41–53.

2. Bychkov S.S. Klassifikacija metodov raspoznavanija dorozhnyh znakov po videoposledovatel’nosti // Reshetnevskie chtenija. 2017. № 21-2. P. 313–314.

3. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenij. M.: Tehnosfera, 2012. 1104 p.

4. Elizarov D.A. Razrabotka sistemy raspoznavanija dorozhnyh znakov // Omskij nauchnyj vestnik. 2017. № 4 (154). P. 120–123.

5. Kurbatova E.E. Kombinirovannyj algoritm vydelenija konturov ob#ektov interesa v monitoringovyh sistemah // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013. № 2 (1). P. 60–65.

6. Medvedev M.V., Kirpichnikov A.P., Sinichkina T.A. Detektirovanie dorozhnyh znakov pri pomoshhi komp’juternogo zrenija // Vestnik tehnologicheskogo universiteta. 2016. № 18. P. 143–147.

7. Polovinkin A.N. Algoritmy klassifikacii izobrazhenij s bol’shim chislom kategorij ob#ektov // Vestnik NNGU. 2013. № 4 (1). P. 225–230.

8. Pchelincev S.Ju., Arzamascev A.A. Primenenie Metoda Violy–Dzhonsa dlja raspoznavanija dorozhnyh znakov // Rossijskaja nauka v sovremennom mire: sb. st. XXI Mezhdunar. nauch.-prakt. konf. M., 2019. P. 107–108.

9. Cukanov M.V., Pshenichkin E.V. Sravnitel’nyj analiz algoritmov raspoznavanija dorozhnyh znakov // Innovacionnaja nauka. 2018. № 4. P. 66–70.

10. Ciresan D., Meier U., Masci J., Schmidhuber J. A committee of neural networks for traffic sign classification. In International joint conference on neural networks. 2011. P. 1918–1921.

11. Ishida H., Takahashi T., Mekada Y., Murase H. Identification of degraded traffic sign symbols by a generative learning method. Nagoya, Japan: Graduate School of Information Science, 2006.

12. Li H., Sun F., Liu L., Wang L. A novel traffic sign detection method via color segmentation and robust shape matching. Neurocomputing, 2015. P. 77–88.

13. Siegmann P., Lopez-Sastre R.J., Gil-Jimenez P., Lafuente-Arroyo S., MaldonadoBascon S. Fundaments in luminance and retroreflectivity measurements of vertical traffic signs using a color digital camera. IEEE Transactions on Instrumentation and Measurement. 2008. № 3. 607 p.

14. GOST R 52290–2004. Tehnicheskie sredstva organizacii dorozhnogo dvizhenija. Znaki dorozhnye. Obshhie tehnicheskie trebovanija. [Jelektronnyj resurs]. URL: http://www.nppskmost.ru/files/G0ST_P_52290_2004_1.pdf (data obrashhenija: 14.01.2020).

15. Mashinnoe obuchenie (kurs lekcij, K.V. Voroncov). [Jelektronnyj resurs]. URL: http://www.machinelearning.ru/wiki/index.php?title=Mashinnoe_obuchenie_(kurs_lekcij,_K.V.Voroncov) (data obrashhenija: 14.01.2020).

16. Rossijskaja baza izobrazhenij avtodorozhnyh znakov. [Jelektronnyj resurs]. URL: https://graphics.cs.msu.ru/node/1325 (data obrashhenija: 14.01.2020).


Review

For citations:


Pchelintsev S.Yu. Modification of the Pre-Processing Stage of a Traffi Sign Recognition System Taking into Account the Characteristics of the Subject Area. Vestnik NSUEM. 2020;(2):235-249. (In Russ.) https://doi.org/10.34020/2073-6495-2020-2-235-249



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-6495 (Print)