Modification of the Pre-Processing Stage of a Traffi Sign Recognition System Taking into Account the Characteristics of the Subject Area
https://doi.org/10.34020/2073-6495-2020-2-235-249
Abstract
About the Author
S. Yu. PchelintsevRussian Federation
Pchelintsev Sergey Yu., Postgraduate Student, Department of Mathematical Modeling and Information Technology
Tambov
References
1. Belyh E.A. Obuchenie kaskadov Haara // Vestnik Syktyvkarskogo universiteta. Ser. 1: Matematika. Mehanika. Informatika. 2017. Vyp. 1 (22). P. 41–53.
2. Bychkov S.S. Klassifikacija metodov raspoznavanija dorozhnyh znakov po videoposledovatel’nosti // Reshetnevskie chtenija. 2017. № 21-2. P. 313–314.
3. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenij. M.: Tehnosfera, 2012. 1104 p.
4. Elizarov D.A. Razrabotka sistemy raspoznavanija dorozhnyh znakov // Omskij nauchnyj vestnik. 2017. № 4 (154). P. 120–123.
5. Kurbatova E.E. Kombinirovannyj algoritm vydelenija konturov ob#ektov interesa v monitoringovyh sistemah // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013. № 2 (1). P. 60–65.
6. Medvedev M.V., Kirpichnikov A.P., Sinichkina T.A. Detektirovanie dorozhnyh znakov pri pomoshhi komp’juternogo zrenija // Vestnik tehnologicheskogo universiteta. 2016. № 18. P. 143–147.
7. Polovinkin A.N. Algoritmy klassifikacii izobrazhenij s bol’shim chislom kategorij ob#ektov // Vestnik NNGU. 2013. № 4 (1). P. 225–230.
8. Pchelincev S.Ju., Arzamascev A.A. Primenenie Metoda Violy–Dzhonsa dlja raspoznavanija dorozhnyh znakov // Rossijskaja nauka v sovremennom mire: sb. st. XXI Mezhdunar. nauch.-prakt. konf. M., 2019. P. 107–108.
9. Cukanov M.V., Pshenichkin E.V. Sravnitel’nyj analiz algoritmov raspoznavanija dorozhnyh znakov // Innovacionnaja nauka. 2018. № 4. P. 66–70.
10. Ciresan D., Meier U., Masci J., Schmidhuber J. A committee of neural networks for traffic sign classification. In International joint conference on neural networks. 2011. P. 1918–1921.
11. Ishida H., Takahashi T., Mekada Y., Murase H. Identification of degraded traffic sign symbols by a generative learning method. Nagoya, Japan: Graduate School of Information Science, 2006.
12. Li H., Sun F., Liu L., Wang L. A novel traffic sign detection method via color segmentation and robust shape matching. Neurocomputing, 2015. P. 77–88.
13. Siegmann P., Lopez-Sastre R.J., Gil-Jimenez P., Lafuente-Arroyo S., MaldonadoBascon S. Fundaments in luminance and retroreflectivity measurements of vertical traffic signs using a color digital camera. IEEE Transactions on Instrumentation and Measurement. 2008. № 3. 607 p.
14. GOST R 52290–2004. Tehnicheskie sredstva organizacii dorozhnogo dvizhenija. Znaki dorozhnye. Obshhie tehnicheskie trebovanija. [Jelektronnyj resurs]. URL: http://www.nppskmost.ru/files/G0ST_P_52290_2004_1.pdf (data obrashhenija: 14.01.2020).
15. Mashinnoe obuchenie (kurs lekcij, K.V. Voroncov). [Jelektronnyj resurs]. URL: http://www.machinelearning.ru/wiki/index.php?title=Mashinnoe_obuchenie_(kurs_lekcij,_K.V.Voroncov) (data obrashhenija: 14.01.2020).
16. Rossijskaja baza izobrazhenij avtodorozhnyh znakov. [Jelektronnyj resurs]. URL: https://graphics.cs.msu.ru/node/1325 (data obrashhenija: 14.01.2020).
Review
For citations:
Pchelintsev S.Yu. Modification of the Pre-Processing Stage of a Traffi Sign Recognition System Taking into Account the Characteristics of the Subject Area. Vestnik NSUEM. 2020;(2):235-249. (In Russ.) https://doi.org/10.34020/2073-6495-2020-2-235-249