

Building fraud monitoring systems: approaches, methods, models and their practical implementation
https://doi.org/10.34020/2073-6495-2024-4-079-096
Abstract
Banks and financial organizations use various software and technology solutions aimed at combating fraudulent transactions, and the range of such solutions is quite wide. But none of the solutions guarantees the complete elimination of various fraudulent activities. Therefore, anti-fraud systems are constantly developing and improving. In this paper, an attempt is made to systematize information regarding the construction of fraud monitoring systems, highlight the main approaches to creating such systems, briefly describe the methods and models used, and also present the results of a comparative analysis of the most well-known domestic and foreign fraud monitoring systems.
About the Authors
N. M. KrainovRussian Federation
Krainov Nikita M. - Graduate Student
Novosibirsk
L. K. Bobrov
Russian Federation
Bobrov Leonid K. - Doctor of Technical Sciences, Professor of the Department of Applied Informatics
Novosibirsk
References
1. Abramovskij A.A. Profajling. Ponyatie i osnovnye napravleniya v kriminalistike [The concept and main directions in forensics], Izvestiya Tul’skogo gosudarstvennogo universiteta [News of the Tula State University], 2020, no. 2, pp. 44–56.
2. User Entity and Behavioral Analytics [User Entity and Behavioral Analytics]. Enciklopediya Kasperskogo [website]. Available at: https://encyclopedia.kaspersky.ru/glossary/ueba/ (accessed: 11.04.2024).
3. Ranjan R., Kumar S.S. User behavior analysis using data analytics and machine learning to predict malicious user versus legitimate user, Decision Analytics Journal, 2022, no. 2 (1), pp. 1–10.
4. Kaspersky Fraud Prevention [website]. Rossiya, 2014. Available at: https://kfp.kaspersky.com/ru/ (accessed: 11.04.2024).
5. IBM Corp. [website]. SSHA, 1911. Available at: https://www.ibm.com/products/saferpayments (accessed: 11.04.2024).
6. Sardar T.H., Ansari Z. Partition based clustering of large datasets using MapReduce framework: An analysis of recent themes and directions, Future Computing and Informatics Journal, 2018, no. 3 (2), pp. 247–261.
7. Bhattacharya R., Nagwani N.K., Tripathi S. A community detection model using node ambedding approach and graph convolutional network with clustering technique, Decision Analytics Journal, 2023, no. 9, pp. 1–11.
8. Miguel Ângelo Lellis Moreira, Claudio de Souza Rocha Junior, Diogo Ferreira de Lima Silva, Marcos Alexandre Pinto de Castro Junior, Igor Pinheiro de Araújo Costa, Carlos Francisco Simões Gomes. Exploratory analysis and implementation of machine learning techniques for predictive assessment of fraud in banking systems, Procedia Computer Science, 2022, no. 1 (214), pp. 117–124.
9. Osipova T.A., Zajcev K.S., Bifert V.O. Primenenie algoritmov mashinnogo obucheniya k zadache vyyavleniya moshennichestva pri ispol’zovanii plastikovyh kart [The use of machine learning algorithms for the problem of identifying fraud using plastic cards], International Journal of Open Information Technologies [International Journal of Open Information Technologies], 2021, no. 1, pp. 23–29.
10. Ivanova G.S., Fokina Yu.O. Analiz ispol’zovaniya algoritmov mashinnogo obucheniya v sistemah frod-monitoringa [Analysis of the use of machine learning algorithms in fraud monitoring systems], Tekhnologii inzhenernyh i informacionnyh system [Technologies of Engineering and Information Systems], 2022, no. 2, pp. 121–132.
11. Vertuhov V.K. Tkachenko S.N. Ispol’zovanie mashinnogo obucheniya v sistemah frod-monitoringa [The use of machine learning in fraud monitoring systems]. Nauka, tekhnologii i innovacii: tendencii i napravlenie razvitiya: sb. nauch. tr. po mat-lam XVI Mezhdunarodnogo mezhdisciplinarnogo foruma molodyh uchenyh. Moscow: Professional’naya nauka, 2019. Pp. 24–31.
12. Vlasenko A.V., Dz’oban P.I., Zhuk R.V. Obzor instrumentov mashinnogo obucheniya i ih primeneniya v oblasti kiberbezopasnosti [Review of machine learning tools and their application in the field of cybersecurity], Prikaspijskij zhurnal: upravlenie i vysokie tekhnologii [Caspian Journal: Management and High Technologies], 2020, no. 1 (49), pp. 144–155.
13. Dornadula V.N., Geetha S. Credit Card Fraud Detection using Machine Learning Algorithms, Procedia Computer Science, 2019, no. 1 (165), pp. 631–641.
14. Domashova J., Kripak E. Identification of non-typical international transactions on bank cards of individuals using machine learning methods, Procedia Computer, 2021, no. 1 (190), pp. 178–183.
15. Sadgali I., Sael N., Benabbou F. Performance of machine learning techniques in the detection of financial frauds, Procedia Computer Science, 2019, no. 1 (148), pp. 45–54.
16. Levashov M.V., Ovchinnikov P.V. Effektivnost’ klassifikatorov dlya vyyavleniya froda v finansovyh tranzakciyah [The effectiveness of classifiers for the identification of Frod in financial transactions], Voprosy kiberbezopasnosti [Issues of cybersecurity], 2019, no. 5 (33), pp. 63–69.
17. Osegi E.N., Jumbo E.F. Comparative analysis of credit card fraud detection in Simulated Annealing trained Artificial Neural Network and Hierarchical Temporal Memory, Machine Learning with Applications, 2021, no. 6, pp. 1–10.
18. Kathikeyan T., Govidarajan M., Vijayakumar V. An effective fraud detection using competitive swarm optimization based deep neural network, Measurement: Sensors. 2023, no. 27, pp. 1–13.
19. Intissar Grissa, Ezzeddine Abaoub. Enhancing Fraud Detection in Financial Statements with Deep Learning: An Audit Perspective, International Journal For Multidisciplinary Research, January-February 2024, vol. 6, iss. 1. Available at: https://www.ijfmr.com/papers/2024/1/13451.pdf (accessed: 23.06.2024).
20. Patricia Craja, Alisa Kim, Stefan Lessmann. Deep learning for detecting financial statement fraud, Decision Support Systems, December 2020, vol. 139, 113421. Available at: https://doi.org/10.1016/j.dss.2020.113421 (accessed: 23.06.2024).
21. Nice company [website]. 1986. Available at: https://www.niceactimize.com/ (accessed: 02.04.2024).
22. FICO company [website]. 1956. Available at: https://www.fico.com/ (accessed: 03.04. 2024).
23. SAS company [website]. 1976. Available at: https://www.sas.com (accessed: 08.04. 2024).
24. Cybertonica OmniReact [website]. 2015. Available at: https://cybertonica.ru/products/omnireact/ (accessed: 02.04.2024).
25. BI. ZONE Fraud Prevention [website]. 2016. Available at: https://bi.zone/catalog/products/antifraud/ (accessed: 03.04.2024).
26. Frod-monitoring: protivodejstvie moshennichestvu. Novostnoj portal AI RUSSIA [website]. 2021. Available at: https://ai-russia.ru/library/sber-transaction (accessed: 03.04.2024).
27. Moshenniki stali chashche atakovat’ rossiyan [Fraudsters began to attack Russians more often]. Analiticheskij centr NAFI [website]. 2023. Available at: https://nafi.ru/analytics/moshenniki-stali-chashche-atakovat-rossiyan/ (accessed: 12.04.2024).
28. Poteri bankov ot kiberprestupnosti [Bank losses from cybercrime]. TADVISER [website]. 2024. Available at: https://www.tadviser.ru/ (accessed: 12.04.2024).
29. Moshennichestvo s bankovskimi kartami i platezhami [Fraud with bank cards and payments]. TADVISER [website]. 2024. Available at: https://www.tadviser.ru/ (accessed: 12.04.2024).
30. Danilova E.P., Portnyaga E.M. Finansovoe moshennichestvo v sovremennom mire [Financial fraud in the modern world], Siberian Socium [Siberian Socium], 2023, vol. 7, no. 2 (24), pp. 67–97.
Review
For citations:
Krainov N.M., Bobrov L.K. Building fraud monitoring systems: approaches, methods, models and their practical implementation. Vestnik NSUEM. 2024;(4):79-96. (In Russ.) https://doi.org/10.34020/2073-6495-2024-4-079-096